Chapter 10 Clustering Techniques

10.0.1 k-means

Generating some data

Finding clusters with kmeans

Centers of clusters

Sums of squares for kmeans

## [1] 12561.82
## [1] 179.8380 164.9543 187.9353
## [1] 532.7276
## [1] 12029.09
## [1] 12561.82

Bad choice of initial centers

## [1] 5385.793

Repeating k-means a large number of random times

## [1] 532.7276

k-means for iris data

##    
##     setosa versicolor virginica
##   1     50          0         0
##   2      0         48        14
##   3      0          2        36

10.1 Plotting SSW vs K

10.1.1 Silhouette coefficient

## [1] 532.7276

## [1] 0 0
##        cluster neighbor sil_width
##   [1,]       3        1 0.8696676
##   [2,]       3        2 0.8088582
##   [3,]       3        1 0.8247808
##   [4,]       3        1 0.8709415
##   [5,]       3        1 0.7229257
##   [6,]       3        1 0.8550709
##   [7,]       3        1 0.8493582
##   [8,]       3        1 0.8078686
##   [9,]       3        1 0.8290648
##  [10,]       3        1 0.8713395
##  [11,]       3        1 0.8614949
##  [12,]       3        1 0.8404844
##  [13,]       3        1 0.8382013
##  [14,]       3        1 0.8125570
##  [15,]       3        1 0.8744478
##  [16,]       3        1 0.8477436
##  [17,]       3        1 0.8771452
##  [18,]       3        1 0.7719118
##  [19,]       3        1 0.8699126
##  [20,]       3        1 0.8595228
##  [21,]       3        1 0.8468149
##  [22,]       3        1 0.8709906
##  [23,]       3        2 0.8074481
##  [24,]       3        1 0.8608883
##  [25,]       3        1 0.8354594
##  [26,]       3        2 0.7800963
##  [27,]       3        1 0.8085929
##  [28,]       3        1 0.8337341
##  [29,]       3        1 0.8559086
##  [30,]       3        1 0.8437202
##  [31,]       3        1 0.8320181
##  [32,]       3        1 0.8418720
##  [33,]       3        1 0.8387344
##  [34,]       3        1 0.8710038
##  [35,]       3        1 0.7240550
##  [36,]       3        1 0.8722741
##  [37,]       3        1 0.8436846
##  [38,]       3        1 0.8704734
##  [39,]       3        1 0.7921342
##  [40,]       3        1 0.8387886
##  [41,]       3        1 0.5137658
##  [42,]       3        1 0.8492418
##  [43,]       3        1 0.7814120
##  [44,]       3        2 0.7710677
##  [45,]       3        1 0.8233126
##  [46,]       3        1 0.8543183
##  [47,]       3        1 0.7757547
##  [48,]       3        1 0.7957971
##  [49,]       3        1 0.8690833
##  [50,]       3        1 0.8575127
##  [51,]       3        1 0.6456812
##  [52,]       3        2 0.7039491
##  [53,]       3        1 0.8223286
##  [54,]       3        1 0.8607782
##  [55,]       3        1 0.8356221
##  [56,]       3        1 0.8670879
##  [57,]       3        1 0.8514095
##  [58,]       3        1 0.8504436
##  [59,]       3        1 0.8174590
##  [60,]       3        1 0.8308096
##  [61,]       3        1 0.8349739
##  [62,]       3        1 0.8591320
##  [63,]       3        1 0.7865738
##  [64,]       3        1 0.8483211
##  [65,]       3        1 0.8699085
##  [66,]       3        1 0.7729388
##  [67,]       3        1 0.8014043
##  [68,]       3        1 0.8694773
##  [69,]       3        1 0.8321588
##  [70,]       3        1 0.8666592
##  [71,]       3        1 0.8525650
##  [72,]       3        1 0.7311128
##  [73,]       3        2 0.7672046
##  [74,]       3        1 0.8346111
##  [75,]       3        1 0.8536639
##  [76,]       3        1 0.8517964
##  [77,]       3        1 0.8568664
##  [78,]       3        1 0.8299386
##  [79,]       3        1 0.8065321
##  [80,]       3        1 0.8461546
##  [81,]       3        1 0.7728122
##  [82,]       3        1 0.8352684
##  [83,]       3        1 0.8458249
##  [84,]       3        1 0.8312231
##  [85,]       3        1 0.8643019
##  [86,]       3        1 0.8469984
##  [87,]       3        1 0.8568679
##  [88,]       3        1 0.8564399
##  [89,]       3        1 0.8424428
##  [90,]       3        1 0.8771019
##  [91,]       3        1 0.7699409
##  [92,]       3        1 0.7777721
##  [93,]       3        1 0.7014892
##  [94,]       3        1 0.8550002
##  [95,]       3        1 0.8763192
##  [96,]       3        1 0.7428596
##  [97,]       3        1 0.8277645
##  [98,]       3        1 0.8269094
##  [99,]       3        1 0.8626082
## [100,]       3        1 0.8006808
## [101,]       1        3 0.7365399
## [102,]       1        3 0.8401568
## [103,]       1        3 0.8610847
## [104,]       1        3 0.8808319
## [105,]       1        3 0.8770088
## [106,]       1        3 0.8400289
## [107,]       1        3 0.7875270
## [108,]       1        3 0.8388017
## [109,]       1        3 0.8200906
## [110,]       1        3 0.8421414
## [111,]       1        3 0.8502496
## [112,]       1        3 0.8798114
## [113,]       1        2 0.5643145
## [114,]       1        3 0.8147017
## [115,]       1        3 0.8290542
## [116,]       1        3 0.6715682
## [117,]       1        3 0.8336260
## [118,]       1        3 0.8643477
## [119,]       1        3 0.8214868
## [120,]       1        3 0.8246418
## [121,]       1        3 0.8269585
## [122,]       1        3 0.8540034
## [123,]       1        3 0.8540983
## [124,]       1        3 0.8124671
## [125,]       1        3 0.8739842
## [126,]       1        3 0.8552268
## [127,]       1        3 0.8634727
## [128,]       1        3 0.8182460
## [129,]       1        2 0.7985108
## [130,]       1        3 0.6898742
## [131,]       1        3 0.8077230
## [132,]       1        3 0.8194325
## [133,]       1        3 0.8594724
## [134,]       1        3 0.8551427
## [135,]       1        3 0.8822186
## [136,]       1        3 0.8814329
## [137,]       1        3 0.8815826
## [138,]       1        2 0.8130860
## [139,]       1        3 0.8336026
## [140,]       1        3 0.8575166
## [141,]       1        3 0.8490436
## [142,]       1        3 0.8553501
## [143,]       1        3 0.7688082
## [144,]       1        3 0.8767853
## [145,]       1        3 0.7707039
## [146,]       1        3 0.8620915
## [147,]       1        3 0.8491482
## [148,]       1        3 0.7673984
## [149,]       1        2 0.8161893
## [150,]       1        3 0.8678334
## [151,]       1        3 0.8230715
## [152,]       1        3 0.8445886
## [153,]       1        3 0.8765472
## [154,]       1        3 0.8740807
## [155,]       1        2 0.7971585
## [156,]       1        3 0.8832055
## [157,]       1        3 0.8454072
## [158,]       1        3 0.8585775
## [159,]       1        3 0.8845767
## [160,]       1        3 0.8798980
## [161,]       1        3 0.8714469
## [162,]       1        3 0.7585387
## [163,]       1        3 0.8742320
## [164,]       1        3 0.8518447
## [165,]       1        3 0.8693105
## [166,]       1        3 0.7980026
## [167,]       1        3 0.8521926
## [168,]       1        3 0.8647852
## [169,]       1        3 0.8418908
## [170,]       1        3 0.8257726
## [171,]       1        3 0.8605446
## [172,]       1        3 0.8792384
## [173,]       1        3 0.8700194
## [174,]       1        3 0.8033307
## [175,]       1        3 0.7757446
## [176,]       1        3 0.8040341
## [177,]       1        3 0.8705002
## [178,]       1        3 0.8716578
## [179,]       1        3 0.8611811
## [180,]       1        3 0.8096316
## [181,]       1        3 0.8630678
## [182,]       1        3 0.8744223
## [183,]       1        3 0.8108437
## [184,]       1        3 0.7448567
## [185,]       1        3 0.7491136
## [186,]       1        3 0.8221233
## [187,]       1        3 0.8602858
## [188,]       1        3 0.8348233
## [189,]       1        3 0.8757756
## [190,]       1        3 0.8454077
## [191,]       1        3 0.8546225
## [192,]       1        3 0.8841516
## [193,]       1        3 0.8625778
## [194,]       1        3 0.8816799
## [195,]       1        3 0.8180814
## [196,]       1        3 0.8814712
## [197,]       1        3 0.8160123
## [198,]       1        3 0.8370477
## [199,]       1        3 0.8382675
## [200,]       1        3 0.8754632
## [201,]       2        1 0.8461365
## [202,]       2        1 0.8793393
## [203,]       2        1 0.8862875
## [204,]       2        3 0.8290178
## [205,]       2        1 0.8816619
## [206,]       2        3 0.8394148
## [207,]       2        1 0.8919025
## [208,]       2        1 0.6116578
## [209,]       2        1 0.8862809
## [210,]       2        1 0.8895033
## [211,]       2        1 0.8925873
## [212,]       2        1 0.8410703
## [213,]       2        1 0.8859523
## [214,]       2        3 0.7899513
## [215,]       2        3 0.8036186
## [216,]       2        3 0.7473848
## [217,]       2        1 0.8815200
## [218,]       2        1 0.8514589
## [219,]       2        1 0.8439900
## [220,]       2        1 0.8729198
## [221,]       2        3 0.8818592
## [222,]       2        3 0.8420747
## [223,]       2        1 0.8666452
## [224,]       2        3 0.7945632
## [225,]       2        3 0.8434043
## [226,]       2        3 0.8675522
## [227,]       2        3 0.8444620
## [228,]       2        3 0.8284172
## [229,]       2        1 0.8768857
## [230,]       2        3 0.8874993
## [231,]       2        1 0.8177070
## [232,]       2        1 0.8432540
## [233,]       2        1 0.8112985
## [234,]       2        1 0.8353886
## [235,]       2        3 0.8190057
## [236,]       2        3 0.7925129
## [237,]       2        1 0.8848146
## [238,]       2        1 0.8258580
## [239,]       2        1 0.8917478
## [240,]       2        3 0.8222564
## [241,]       2        3 0.8336633
## [242,]       2        3 0.8820293
## [243,]       2        1 0.8433196
## [244,]       2        3 0.8656072
## [245,]       2        3 0.8846286
## [246,]       2        3 0.8858598
## [247,]       2        1 0.8845238
## [248,]       2        3 0.8525955
## [249,]       2        1 0.8715526
## [250,]       2        1 0.8129273
## [251,]       2        1 0.8654771
## [252,]       2        3 0.7616417
## [253,]       2        3 0.8375418
## [254,]       2        1 0.8703376
## [255,]       2        3 0.8707569
## [256,]       2        3 0.8629275
## [257,]       2        1 0.8750381
## [258,]       2        1 0.8908657
## [259,]       2        1 0.8820894
## [260,]       2        1 0.7734206
## [261,]       2        1 0.8383659
## [262,]       2        1 0.8943197
## [263,]       2        1 0.8771958
## [264,]       2        1 0.8766653
## [265,]       2        1 0.6572257
## [266,]       2        1 0.8740963
## [267,]       2        3 0.7493818
## [268,]       2        3 0.8570024
## [269,]       2        1 0.8214380
## [270,]       2        3 0.8241220
## [271,]       2        3 0.8289443
## [272,]       2        3 0.8554900
## [273,]       2        1 0.8373430
## [274,]       2        1 0.8193391
## [275,]       2        3 0.8302358
## [276,]       2        1 0.8803942
## [277,]       2        3 0.8561153
## [278,]       2        1 0.8390608
## [279,]       2        3 0.8422477
## [280,]       2        1 0.8851251
## [281,]       2        3 0.8917757
## [282,]       2        3 0.8611081
## [283,]       2        3 0.8485159
## [284,]       2        1 0.8280131
## [285,]       2        3 0.8652746
## [286,]       2        3 0.8871829
## [287,]       2        3 0.8622431
## [288,]       2        1 0.8728448
## [289,]       2        1 0.8614948
## [290,]       2        1 0.8769395
## [291,]       2        3 0.8711620
## [292,]       2        1 0.8316326
## [293,]       2        3 0.8729221
## [294,]       2        1 0.8314662
## [295,]       2        1 0.8578285
## [296,]       2        1 0.8827802
## [297,]       2        1 0.7989133
## [298,]       2        1 0.8725797
## [299,]       2        1 0.7871436
## [300,]       2        3 0.8878239
## attr(,"Ordered")
## [1] FALSE
## attr(,"call")
## silhouette.default(x = best$cluster, dmatrix = dmatrix)
## attr(,"class")
## [1] "silhouette"
##   [1] 0.8696676 0.8088582 0.8247808 0.8709415 0.7229257 0.8550709 0.8493582 0.8078686 0.8290648
##  [10] 0.8713395 0.8614949 0.8404844 0.8382013 0.8125570 0.8744478 0.8477436 0.8771452 0.7719118
##  [19] 0.8699126 0.8595228 0.8468149 0.8709906 0.8074481 0.8608883 0.8354594 0.7800963 0.8085929
##  [28] 0.8337341 0.8559086 0.8437202 0.8320181 0.8418720 0.8387344 0.8710038 0.7240550 0.8722741
##  [37] 0.8436846 0.8704734 0.7921342 0.8387886 0.5137658 0.8492418 0.7814120 0.7710677 0.8233126
##  [46] 0.8543183 0.7757547 0.7957971 0.8690833 0.8575127 0.6456812 0.7039491 0.8223286 0.8607782
##  [55] 0.8356221 0.8670879 0.8514095 0.8504436 0.8174590 0.8308096 0.8349739 0.8591320 0.7865738
##  [64] 0.8483211 0.8699085 0.7729388 0.8014043 0.8694773 0.8321588 0.8666592 0.8525650 0.7311128
##  [73] 0.7672046 0.8346111 0.8536639 0.8517964 0.8568664 0.8299386 0.8065321 0.8461546 0.7728122
##  [82] 0.8352684 0.8458249 0.8312231 0.8643019 0.8469984 0.8568679 0.8564399 0.8424428 0.8771019
##  [91] 0.7699409 0.7777721 0.7014892 0.8550002 0.8763192 0.7428596 0.8277645 0.8269094 0.8626082
## [100] 0.8006808 0.7365399 0.8401568 0.8610847 0.8808319 0.8770088 0.8400289 0.7875270 0.8388017
## [109] 0.8200906 0.8421414 0.8502496 0.8798114 0.5643145 0.8147017 0.8290542 0.6715682 0.8336260
## [118] 0.8643477 0.8214868 0.8246418 0.8269585 0.8540034 0.8540983 0.8124671 0.8739842 0.8552268
## [127] 0.8634727 0.8182460 0.7985108 0.6898742 0.8077230 0.8194325 0.8594724 0.8551427 0.8822186
## [136] 0.8814329 0.8815826 0.8130860 0.8336026 0.8575166 0.8490436 0.8553501 0.7688082 0.8767853
## [145] 0.7707039 0.8620915 0.8491482 0.7673984 0.8161893 0.8678334 0.8230715 0.8445886 0.8765472
## [154] 0.8740807 0.7971585 0.8832055 0.8454072 0.8585775 0.8845767 0.8798980 0.8714469 0.7585387
## [163] 0.8742320 0.8518447 0.8693105 0.7980026 0.8521926 0.8647852 0.8418908 0.8257726 0.8605446
## [172] 0.8792384 0.8700194 0.8033307 0.7757446 0.8040341 0.8705002 0.8716578 0.8611811 0.8096316
## [181] 0.8630678 0.8744223 0.8108437 0.7448567 0.7491136 0.8221233 0.8602858 0.8348233 0.8757756
## [190] 0.8454077 0.8546225 0.8841516 0.8625778 0.8816799 0.8180814 0.8814712 0.8160123 0.8370477
## [199] 0.8382675 0.8754632 0.8461365 0.8793393 0.8862875 0.8290178 0.8816619 0.8394148 0.8919025
## [208] 0.6116578 0.8862809 0.8895033 0.8925873 0.8410703 0.8859523 0.7899513 0.8036186 0.7473848
## [217] 0.8815200 0.8514589 0.8439900 0.8729198 0.8818592 0.8420747 0.8666452 0.7945632 0.8434043
## [226] 0.8675522 0.8444620 0.8284172 0.8768857 0.8874993 0.8177070 0.8432540 0.8112985 0.8353886
## [235] 0.8190057 0.7925129 0.8848146 0.8258580 0.8917478 0.8222564 0.8336633 0.8820293 0.8433196
## [244] 0.8656072 0.8846286 0.8858598 0.8845238 0.8525955 0.8715526 0.8129273 0.8654771 0.7616417
## [253] 0.8375418 0.8703376 0.8707569 0.8629275 0.8750381 0.8908657 0.8820894 0.7734206 0.8383659
## [262] 0.8943197 0.8771958 0.8766653 0.6572257 0.8740963 0.7493818 0.8570024 0.8214380 0.8241220
## [271] 0.8289443 0.8554900 0.8373430 0.8193391 0.8302358 0.8803942 0.8561153 0.8390608 0.8422477
## [280] 0.8851251 0.8917757 0.8611081 0.8485159 0.8280131 0.8652746 0.8871829 0.8622431 0.8728448
## [289] 0.8614948 0.8769395 0.8711620 0.8316326 0.8729221 0.8314662 0.8578285 0.8827802 0.7989133
## [298] 0.8725797 0.7871436 0.8878239
## [1] 0.8356379
## [1] -0.004862342 -0.001056803
## [1] 0.8356379

10.1.3 Significance Test

## [1] 300
##              x         y
## [1,]  1.820006  7.554873
## [2,] 16.944999 22.640867
## [1] 300
##            u.x       u.y
## [1,]  1.821947  7.595441
## [2,] 16.875861 22.609389

## [1] 0.4133293

iris revisited

SSW and silhouette plots. Optimal K=2

## Warning: did not converge in 10 iterations

## [1] 0.6810462
##             
##               1  2
##   setosa     50  0
##   versicolor  3 47
##   virginica   0 50

##          [,1]
## [1,] 0.757101

CHI-SQUARE TEST OF INDEPENDENCE

##      [,1] [,2] [,3] [,4]
## [1,]   16   14   13   13
## [2,]   14    6   10    8
## 
## 	Pearson's Chi-squared test
## 
## data:  mytable
## X-squared = 1.5242, df = 3, p-value = 0.6767
## [1] 0.6776621
## 
## 	Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
## 
## data:  mytable
## X-squared = 1.5242, df = NA, p-value = 0.6697
## 
## 	Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
## 
## data:  iris.table
## X-squared = 137.66, df = NA, p-value = 0.0004998
## 
## 	Pearson's Chi-squared test
## 
## data:  iris.table
## X-squared = 137.66, df = 2, p-value < 2.2e-16

10.1.4 DBSCAN

Creating some data

unif.rect function

DBSCAN

## [1] "cluster" "eps"     "MinPts"  "isseed"
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [48] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [95] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [142] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [189] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [236] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [283] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [330] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [377] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [424] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [471] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [518] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [565] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [612] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [659] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [706] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [753] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [800] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [847] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [894] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [941] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [988] 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [ reached getOption("max.print") -- omitted 4076 entries ]

DBSCAN for iris data

##  Sepal.Length   Sepal.Width  Petal.Length   Petal.Width 
## -4.484318e-16  2.034094e-16 -2.895326e-17 -2.989362e-17
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##            1            1            1            1

## 
##  0  1  2 
##  4 49 97
##             
##               1  2
##   setosa     49  0
##   versicolor  0 50
##   virginica   0 47
## 
## 	Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
## 
## data:  iris.table
## X-squared = 146, df = NA, p-value = 0.0004998

10.1.5 Agglomerative Hierarchical Clustering

Generating some data

## [1]  1.000000  1.414214  3.000000  3.605551  5.590891  8.139410 13.001741 20.308999

cutting the tree at a given height

iris data

Standardizing iris

##  Sepal.Length   Sepal.Width  Petal.Length   Petal.Width 
## -4.484318e-16  2.034094e-16 -2.895326e-17 -2.989362e-17
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##            1            1            1            1

##             iris.cluster
##               1  2
##   setosa     50  0
##   versicolor  0 50
##   virginica   0 50

##             iris.cluster
##               1  2  3
##   setosa     50  0  0
##   versicolor  0 50  0
##   virginica   0 47  3

##             iris.cluster
##               1  2  3  4  5  6  7  8  9 10
##   setosa     28 17  4  1  0  0  0  0  0  0
##   versicolor  0  0  0  0 30 16  3  1  0  0
##   virginica   0  0  0  0 15  1  1 22  8  3

10.1.6 GAUSSIAN MIXTURE EM CLUSTERING

#Generating data

## number of iterations= 4
## [1] "x"          "lambda"     "mu"         "sigma"      "loglik"     "posterior"  "all.loglik"
## [8] "restarts"   "ft"
## [1] 0.3333333 0.3333333 0.3333333
## [[1]]
## [1] 5.030316 9.750965
## 
## [[2]]
## [1] 14.935464  9.941784
## 
## [[3]]
## [1]  9.986731 20.181994

## [[1]]
##             [,1]        [,2]
## [1,]  1.07638821 -0.07027661
## [2,] -0.07027661  0.80296445
## 
## [[2]]
##            [,1]       [,2]
## [1,] 0.78745014 0.07154876
## [2,] 0.07154876 0.86209277
## 
## [[3]]
##             [,1]        [,2]
## [1,]  0.83455170 -0.06130202
## [2,] -0.06130202  0.96382845

Generating more data

multi.rnorm returns an n x p matrix, whose rows are randomly generated normal random vectors with mean vector mu and covariance matrix Sigma

##      [,1] [,2]
## [1,]   25    8
## [2,]    8   16
##           [,1]      [,2]
## [1,] 4.9168996 0.9077988
## [2,] 0.9077988 3.8956259
##      [,1] [,2]
## [1,]   25    8
## [2,]    8   16
## [1] 4.992743 9.996079
##           [,1]      [,2]
## [1,] 24.992858  7.975951
## [2,]  7.975951 15.959923

Another example